Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6391, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302770

RESUMO

Type I restriction-modification systems help establish the prokaryotic DNA methylation landscape and provide protection against invasive DNA. In addition to classical m6A modifications, non-canonical type I enzymes catalyze both m6A and m4C using alternative DNA-modification subunits M1 and M2. Here, we report the crystal structures of the non-canonical PacII_M1M2S methyltransferase bound to target DNA and reaction product S-adenosylhomocysteine in a closed clamp-like conformation. Target DNA binds tightly within the central tunnel of the M1M2S complex and forms extensive contacts with all three protein subunits. Unexpectedly, while the target cytosine properly inserts into M2's pocket, the target adenine (either unmethylated or methylated) is anchored outside M1's pocket. A unique asymmetric catalysis is established where PacII_M1M2S has precisely coordinated the relative conformations of different subunits and evolved specific amino acids within M2/M1. This work provides insights into mechanisms of m6A/m4C catalysis and guidance for designing tools based on type I restriction-modification enzymes.


Assuntos
Enzimas de Restrição-Modificação do DNA , DNA , Enzimas de Restrição-Modificação do DNA/química , DNA/metabolismo , Citosina/metabolismo , Metilação de DNA , Metiltransferases/metabolismo
2.
Int J Biol Macromol ; 208: 381-389, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35337914

RESUMO

Type I restriction-modification enzymes are oligomeric proteins composed of methylation (M), DNA sequence-recognition (S), and restriction (R) subunits. The different bipartite DNA sequences of 2-4 consecutive bases are recognized by two discerned target recognition domains (TRDs) located at the two-helix bundle of the two conserved regions (CRs). Two M-subunits and a single S-subunit form an oligomeric protein that functions as a methyltransferase (M2S1 MTase). Here, we present the crystal structure of the intact MTase from Vibrio vulnificus YJ016 in complex with the DNA-mimicking Ocr protein and the S-adenosyl-L-homocysteine (SAH). This MTase includes the M-domain with a helix tail (M-tail helix) and the S1/2-domain of a TRD and a CR α-helix. The Ocr binds to the cleft of the TRD surface and SAH is located in the pocket within the M-domain. The solution- and negative-staining electron microscopy-based reconstructed (M1S1/2)2 structure reveals a symmetric (S1/2)2 assembly using two CR-helices and two M-tail helices as a pivot, which is plausible for recognizing two DNA regions of same sequence. The conformational flexibility of the minimal M1S1/2 MTase dimer indicates a particular state resembling the structure of M2S1 MTases.


Assuntos
Enzimas de Restrição-Modificação do DNA , Metiltransferases , Sequência de Aminoácidos , DNA/química , Enzimas de Restrição-Modificação do DNA/química , Enzimas de Restrição-Modificação do DNA/genética , Enzimas de Restrição-Modificação do DNA/metabolismo , Metilação , Metiltransferases/química
3.
Nucleic Acids Res ; 49(19): 11257-11273, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34657954

RESUMO

Bacteria have evolved a multitude of systems to prevent invasion by bacteriophages and other mobile genetic elements. Comparative genomics suggests that genes encoding bacterial defence mechanisms are often clustered in 'defence islands', providing a concerted level of protection against a wider range of attackers. However, there is a comparative paucity of information on functional interplay between multiple defence systems. Here, we have functionally characterised a defence island from a multidrug resistant plasmid of the emerging pathogen Escherichia fergusonii. Using a suite of thirty environmentally-isolated coliphages, we demonstrate multi-layered and robust phage protection provided by a plasmid-encoded defence island that expresses both a type I BREX system and the novel GmrSD-family type IV DNA modification-dependent restriction enzyme, BrxU. We present the structure of BrxU to 2.12 Å, the first structure of the GmrSD family of enzymes, and show that BrxU can utilise all common nucleotides and a wide selection of metals to cleave a range of modified DNAs. Additionally, BrxU undergoes a multi-step reaction cycle instigated by an unexpected ATP-dependent shift from an intertwined dimer to monomers. This direct evidence that bacterial defence islands can mediate complementary layers of phage protection enhances our understanding of the ever-expanding nature of phage-bacterial interactions.


Assuntos
Proteínas de Bactérias/química , Colífagos/genética , Enzimas de Restrição-Modificação do DNA/química , Escherichia coli/genética , Escherichia/genética , Plasmídeos/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Colífagos/metabolismo , Cristalografia por Raios X , Enzimas de Restrição-Modificação do DNA/genética , Enzimas de Restrição-Modificação do DNA/metabolismo , DNA Viral/química , DNA Viral/genética , DNA Viral/metabolismo , Escherichia/metabolismo , Escherichia/virologia , Escherichia coli/metabolismo , Escherichia coli/virologia , Expressão Gênica , Ilhas Genômicas , Genômica/métodos , Modelos Moleculares , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
4.
PLoS One ; 16(7): e0253267, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34228724

RESUMO

We report a new subgroup of Type III Restriction-Modification systems that use m4C methylation for host protection. Recognition specificities for six such systems, each recognizing a novel motif, have been determined using single molecule real-time DNA sequencing. In contrast to all previously characterized Type III systems which modify adenine to m6A, protective methylation of the host genome in these new systems is achieved by the N4-methylation of a cytosine base in one strand of an asymmetric 4 to 6 base pair recognition motif. Type III systems are heterotrimeric enzyme complexes containing a single copy of an ATP-dependent restriction endonuclease-helicase (Res) and a dimeric DNA methyltransferase (Mod). The Type III Mods are beta-class amino-methyltransferases, examples of which form either N6-methyl adenine or N4-methyl cytosine in Type II RM systems. The Type III m4C Mod and Res proteins are diverged, suggesting ancient origin or that m4C modification has arisen from m6A MTases multiple times in diverged lineages. Two of the systems, from thermophilic organisms, required expression of both Mod and Res to efficiently methylate an E. coli host, unlike previous findings that Mod alone is proficient at modification, suggesting that the division of labor between protective methylation and restriction activities is atypical in these systems. Two of the characterized systems, and many homologous putative systems, appear to include a third protein; a conserved putative helicase/ATPase subunit of unknown function and located 5' of the mod gene. The function of this additional ATPase is not yet known, but close homologs co-localize with the typical Mod and Res genes in hundreds of putative Type III systems. Our findings demonstrate a rich diversity within Type III RM systems.


Assuntos
Citosina , Metilação de DNA , Enzimas de Restrição-Modificação do DNA/genética , DNA/metabolismo , Citosina/metabolismo , Metilases de Modificação do DNA/química , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/metabolismo , Enzimas de Restrição-Modificação do DNA/química , Enzimas de Restrição-Modificação do DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Cromatografia Gasosa-Espectrometria de Massas , Alinhamento de Sequência , Análise de Sequência de DNA
5.
Nat Microbiol ; 5(9): 1107-1118, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32483229

RESUMO

Type I restriction-modification (R-M) systems are widespread in prokaryotic genomes and provide robust protection against foreign DNA. They are multisubunit enzymes with methyltransferase, endonuclease and translocase activities. Despite extensive studies over the past five decades, little is known about the molecular mechanisms of these sophisticated machines. Here, we report the cryo-electron microscopy structures of the representative EcoR124I R-M system in different assemblies (R2M2S1, R1M2S1 and M2S1) bound to target DNA and the phage and mobile genetic element-encoded anti-restriction proteins Ocr and ArdA. EcoR124I can precisely regulate different enzymatic activities by adopting distinct conformations. The marked conformational transitions of EcoR124I are dependent on the intrinsic flexibility at both the individual-subunit and assembled-complex levels. Moreover, Ocr and ArdA use a DNA-mimicry strategy to inhibit multiple activities, but do not block the conformational transitions of the complexes. These structural findings, complemented by mutational studies of key intermolecular contacts, provide insights into assembly, operation and inhibition mechanisms of type I R-M systems.


Assuntos
Enzimas de Restrição-Modificação do DNA/química , Enzimas de Restrição-Modificação do DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo I/química , Desoxirribonucleases de Sítio Específico do Tipo I/metabolismo , Proteínas de Bactérias , Microscopia Crioeletrônica , DNA/química , DNA/metabolismo , Enzimas de Restrição-Modificação do DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo I/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Mutação , Conformação Proteica , Proteínas Repressoras , Proteínas Virais
6.
Nat Commun ; 10(1): 1968, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036811

RESUMO

The RNA-guided DNA endonuclease Cas9 cleaves double-stranded DNA targets bearing a protospacer adjacent motif (PAM) and complementarity to an RNA guide. Unlike other Cas9 orthologs, Corynebacterium diphtheriae Cas9 (CdCas9) recognizes the promiscuous NNRHHHY PAM. However, the CdCas9-mediated PAM recognition mechanism remains unknown. Here, we report the crystal structure of CdCas9 in complex with the guide RNA and its target DNA at 2.9 Å resolution. The structure reveals that CdCas9 recognizes the NNRHHHY PAM via a combination of van der Waals interactions and base-specific hydrogen bonds. Moreover, we find that CdCas9 exhibits robust DNA cleavage activity with the optimal 22-nucleotide length guide RNAs. Our findings highlight the mechanistic diversity of the PAM recognition by Cas9 orthologs, and provide a basis for the further engineering of the CRISPR-Cas9 genome-editor nucleases.


Assuntos
Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/metabolismo , Enzimas de Restrição-Modificação do DNA/química , Enzimas de Restrição-Modificação do DNA/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Corynebacterium diphtheriae/enzimologia , Corynebacterium diphtheriae/metabolismo , Cristalografia por Raios X , Clivagem do DNA , Células HEK293 , Humanos , Ligação de Hidrogênio
7.
J Biol Chem ; 293(30): 11758-11771, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29895618

RESUMO

Restriction modification systems consist of an endonuclease that cleaves foreign DNA site-specifically and an associated methyltransferase that protects the corresponding target site in the host genome. Modification-dependent restriction systems, in contrast, specifically recognize and cleave methylated and/or glucosylated DNA. The LlaJI restriction system contains two 5-methylcytosine (5mC) methyltransferases (LlaJI.M1 and LlaJI.M2) and two restriction proteins (LlaJI.R1 and LlaJI.R2). LlaJI.R1 and LlaJI.R2 are homologs of McrB and McrC, respectively, which in Escherichia coli function together as a modification-dependent restriction complex specific for 5mC-containing DNA. Lactococcus lactis LlaJI.R1 binds DNA site-specifically, suggesting that the LlaJI system uses a different mode of substrate recognition. Here we present the structure of the N-terminal DNA-binding domain of Helicobacter pylori LlaJI.R1 at 1.97-Å resolution, which adopts a B3 domain fold. Structural comparison to B3 domains in plant transcription factors and other restriction enzymes identifies key recognition motifs responsible for site-specific DNA binding. Moreover, biochemistry and structural modeling provide a rationale for how H. pylori LlaJI.R1 may bind a target site that differs from the 5-bp sequence recognized by other LlaJI homologs and identify residues critical for this recognition activity. These findings underscore the inherent structural plasticity of B3 domains, allowing recognition of a variety of substrates using the same structural core.


Assuntos
Proteínas de Bactérias/química , Enzimas de Restrição-Modificação do DNA/química , DNA/metabolismo , Helicobacter pylori/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Enzimas de Restrição-Modificação do DNA/metabolismo , Infecções por Helicobacter/microbiologia , Helicobacter pylori/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos
8.
Proc Natl Acad Sci U S A ; 114(42): 11151-11156, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28973912

RESUMO

Type I restriction-modification (R-M) systems are multisubunit enzymes with separate DNA-recognition (S), methylation (M), and restriction (R) subunits. Despite extensive studies spanning five decades, the detailed molecular mechanisms underlying subunit assembly and conformational transition are still unclear due to the lack of high-resolution structural information. Here, we report the atomic structure of a type I MTase complex (2M+1S) bound to DNA and cofactor S-adenosyl methionine in the "open" form. The intermolecular interactions between M and S subunits are mediated by a four-helix bundle motif, which also determines the specificity of the interaction. Structural comparison between open and previously reported low-resolution "closed" structures identifies the huge conformational changes within the MTase complex. Furthermore, biochemical results show that R subunits prefer to load onto the closed form MTase. Based on our results, we proposed an updated model for the complex assembly. The work reported here provides guidelines for future applications in molecular biology.


Assuntos
Enzimas de Restrição-Modificação do DNA/metabolismo , Thermoanaerobacter/enzimologia , Enzimas de Restrição-Modificação do DNA/química , Conformação Proteica
9.
BMC Syst Biol ; 11(Suppl 1): 377, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28466789

RESUMO

BACKGROUND: Restriction-modification (R-M) systems are rudimentary bacterial immune systems. The main components include restriction enzyme (R), which cuts specific unmethylated DNA sequences, and the methyltransferase (M), which protects the same DNA sequences. The expression of R-M system components is considered to be tightly regulated, to ensure successful establishment in a naïve bacterial host. R-M systems are organized in different architectures (convergent or divergent) and are characterized by different features, i.e. binding cooperativities, dissociation constants of dimerization, translation rates, which ensure this tight regulation. It has been proposed that R-M systems should exhibit certain dynamical properties during the system establishment, such as: i) a delayed expression of R with respect to M, ii) fast transition of R from "OFF" to "ON" state, iii) increased stability of the toxic molecule (R) steady-state levels. It is however unclear how different R-M system features and architectures ensure these dynamical properties, particularly since it is hard to address this question experimentally. RESULTS: To understand design of different R-M systems, we computationally analyze two R-M systems, representative of the subset controlled by small regulators called 'C proteins', and differing in having convergent or divergent promoter architecture. We show that, in the convergent system, abolishing any of the characteristic system features adversely affects the dynamical properties outlined above. Moreover, an extreme binding cooperativity, accompanied by a very high dissociation constant of dimerization, observed in the convergent system, but absent from other R-M systems, can be explained in terms of the same properties. Furthermore, we develop the first theoretical model for dynamics of a divergent R-M system, which does not share any of the convergent system features, but has overlapping promoters. We show that i) the system dynamics exhibits the same three dynamical properties, ii) introducing any of the convergent system features to the divergent system actually diminishes these properties. CONCLUSIONS: Our results suggest that different R-M architectures and features may be understood in terms of constraints imposed by few simple dynamical properties of the system, providing a unifying framework for understanding these seemingly diverse systems. We also provided predictions for the perturbed R-M systems dynamics, which may in future be tested through increasingly available experimental techniques, such as re-engineering R-M systems and single-cell experiments.


Assuntos
Enzimas de Restrição-Modificação do DNA/metabolismo , Escherichia coli/enzimologia , Modelos Biológicos , Enzimas de Restrição-Modificação do DNA/biossíntese , Enzimas de Restrição-Modificação do DNA/química , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Escherichia coli/genética , Escherichia coli/imunologia , Escherichia coli/metabolismo , Multimerização Proteica , Estrutura Quaternária de Proteína
10.
Nucleic Acids Res ; 44(19): 9413-9425, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27580720

RESUMO

We identify a new subgroup of Type I Restriction-Modification enzymes that modify cytosine in one DNA strand and adenine in the opposite strand for host protection. Recognition specificity has been determined for ten systems using SMRT sequencing and each recognizes a novel DNA sequence motif. Previously characterized Type I systems use two identical copies of a single methyltransferase (MTase) subunit, with one bound at each half site of the specificity (S) subunit to form the MTase. The new m4C-producing Type I systems we describe have two separate yet highly similar MTase subunits that form a heterodimeric M1M2S MTase. The MTase subunits from these systems group into two families, one of which has NPPF in the highly conserved catalytic motif IV and modifies adenine to m6A, and one having an NPPY catalytic motif IV and modifying cytosine to m4C. The high degree of similarity among their cytosine-recognizing components (MTase and S) suggest they have recently evolved, most likely from the far more common m6A Type I systems. Type I enzymes that modify cytosine exclusively were formed by replacing the adenine target recognition domain (TRD) with a cytosine-recognizing TRD. These are the first examples of m4C modification in Type I RM systems.


Assuntos
Citosina/metabolismo , Enzimas de Restrição-Modificação do DNA/metabolismo , DNA/metabolismo , Adenina/metabolismo , Sequência de Aminoácidos , Catálise , Biologia Computacional/métodos , DNA/química , Enzimas de Restrição-Modificação do DNA/química , Enzimas de Restrição-Modificação do DNA/genética , Metilação , Metiltransferases/química , Metiltransferases/metabolismo , Mutação , Motivos de Nucleotídeos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Especificidade por Substrato
11.
Microb Ecol ; 68(4): 842-58, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25008981

RESUMO

A type II restriction-modification system was found in a native plasmid of Pseudomonas savastanoi pv. savastanoi MLLI2. Functional analysis of the methyltransferase showed that the enzyme acts by protecting the DNA sequence CTGCAG from cleavage. Restriction endonuclease expression in recombinant Escherichia coli cells resulted in mutations in the REase sequence or transposition of insertion sequence 1A in the coding sequence, preventing lethal gene expression. Population screening detected homologous RM systems in other P. savastanoi strains and in the Pseudomonas syringae complex. An epidemiological survey carried out by sampling olive and oleander knots in two Italian regions showed an uneven diffusion of carrier strains, whose presence could be related to a selective advantage in maintaining the RM system in particular environments or subpopulations. Moreover, carrier strains can coexist in the same orchards, plants, and knot tissues with non-carriers, revealing unexpected genetic variability on a very small spatial scale. Phylogenetic analysis of the RM system and housekeeping gene sequences in the P. syringae complex demonstrated the ancient acquisition of the RM systems. However, the evolutionary history of the gene complex also showed the involvement of horizontal gene transfer between related strains and recombination events.


Assuntos
Proteínas de Bactérias/genética , Evolução Biológica , Enzimas de Restrição-Modificação do DNA/genética , Pseudomonas/enzimologia , Pseudomonas/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Enzimas de Restrição-Modificação do DNA/química , Enzimas de Restrição-Modificação do DNA/metabolismo , Elementos de DNA Transponíveis , Escherichia coli/genética , Transferência Genética Horizontal , Dados de Sequência Molecular , Nerium/microbiologia , Olea/microbiologia , Organismos Geneticamente Modificados/genética , Filogenia
12.
Biochem Biophys Res Commun ; 449(1): 120-5, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24813995

RESUMO

EcoP15I is a Type III DNA restriction and modification enzyme of Escherichia coli. We show that it contains two modification (Mod) subunits for sequence-specific methylation of DNA and one copy of a restriction endonuclease (Res) subunit for cleavage of DNA containing unmethylated target sequences. Previously the Mod2 dimer in the presence of cofactors was shown to use nucleotide flipping to gain access to the adenine base targeted for methylation (Reddy and Rao, J. Mol. Biol. 298 (2000) 597-610.). Surprisingly the Mod2 enzyme also appeared to flip a second adenine in the target sequence, one which was not subject to methylation. We show using fluorescence lifetime measurements of the adenine analogue, 2-aminopurine, that only the methylatable adenine undergoes flipping by the complete Res1Mod2 enzyme and that this occurs even in the absence of cofactors. We suggest that this is due to activation of the Mod2 core by the Res subunit.


Assuntos
2-Aminopurina/química , Metilação de DNA , Enzimas de Restrição-Modificação do DNA/química , DNA/química , DNA Metiltransferases Sítio Específica (Adenina-Específica)/química , Espectrometria de Fluorescência/métodos , Sítios de Ligação , Ativação Enzimática , Especificidade por Substrato
13.
Artigo em Inglês | MEDLINE | ID: mdl-23989141

RESUMO

The controller protein of the type II restriction-modification (RM) system Esp1396I binds to three distinct DNA operator sequences upstream of the methyltransferase and endonuclease genes in order to regulate their expression. Previous biophysical and crystallographic studies have shown molecular details of how the controller protein binds to the operator sites with very different affinities. Here, two protein-DNA co-crystal structures containing portions of unbound DNA from native operator sites are reported. The DNA in both complexes shows significant distortion in the region between the conserved symmetric sequences, similar to that of a DNA duplex when bound by the controller protein (C-protein), indicating that the naked DNA has an intrinsic tendency to bend when not bound to the C-protein. Moreover, the width of the major groove of the DNA adjacent to a bound C-protein dimer is observed to be significantly increased, supporting the idea that this DNA distortion contributes to the substantial cooperativity found when a second C-protein dimer binds to the operator to form the tetrameric repression complex.


Assuntos
Proteínas de Bactérias/química , Enzimas de Restrição-Modificação do DNA/química , DNA Bacteriano/química , Proteínas de Ligação a DNA/química , Escherichia coli/química , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , Enzimas de Restrição-Modificação do DNA/genética , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Regiões Operadoras Genéticas/genética , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
14.
Protein Expr Purif ; 87(2): 136-40, 2013 02.
Artigo em Inglês | MEDLINE | ID: mdl-23201446

RESUMO

Type I restriction-modification (R-M) systems are comprised of two multi-subunit enzymes with complementary functions: the methyltransferase (~160 kDa), responsible for methylation of DNA, and the restriction endonuclease (~400 kDa), responsible for DNA cleavage. Both enzymes share a number of subunits, including HsdM. Characterisation of either enzyme first requires the expression and purification of its constituent subunits, before reconstitution of the multisubunit complex. Previously, purification of the HsdM protein had proved problematic, due to the length of time required for the purification and its susceptibility to degradation. A new protocol was therefore developed to decrease the length of time required to purify the HsdM protein and thus prevent degradation. Finally, we show that the HsdM subunit exhibits a concentration dependent monomer-dimer equilibrium.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Enzimas de Restrição-Modificação do DNA/isolamento & purificação , Desoxirribonucleases de Sítio Específico do Tipo I/química , Metiltransferases/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Enzimas de Restrição-Modificação do DNA/biossíntese , Enzimas de Restrição-Modificação do DNA/química , Enzimas de Restrição-Modificação do DNA/genética , Escherichia coli , Metiltransferases/biossíntese , Metiltransferases/química , Metiltransferases/genética , Protaminas/química , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Cloreto de Sódio/química , Ultracentrifugação
15.
Nucleic Acids Res ; 40(21): 10916-24, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23002145

RESUMO

The EcoKI DNA methyltransferase is a trimeric protein comprised of two modification subunits (M) and one sequence specificity subunit (S). This enzyme forms the core of the EcoKI restriction/modification (RM) enzyme. The 3' end of the gene encoding the M subunit overlaps by 1 nt the start of the gene for the S subunit. Translation from the two different open reading frames is translationally coupled. Mutagenesis to remove the frameshift and fuse the two subunits together produces a functional RM enzyme in vivo with the same properties as the natural EcoKI system. The fusion protein can be purified and forms an active restriction enzyme upon addition of restriction subunits and of additional M subunit. The Type I RM systems are grouped into families, IA to IE, defined by complementation, hybridization and sequence similarity. The fusion protein forms an evolutionary intermediate form lying between the Type IA family of RM enzymes and the Type IB family of RM enzymes which have the frameshift located at a different part of the gene sequence.


Assuntos
Proteínas de Bactérias/genética , Enzimas de Restrição-Modificação do DNA/genética , Proteínas de Escherichia coli/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , Fusão Gênica Artificial , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Colífagos/genética , Clivagem do DNA , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/metabolismo , Enzimas de Restrição-Modificação do DNA/química , Enzimas de Restrição-Modificação do DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo I/genética , Desoxirribonucleases de Sítio Específico do Tipo I/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Mudança da Fase de Leitura do Gene Ribossômico , Mutagênese , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , DNA Metiltransferases Sítio Específica (Adenina-Específica)/química , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Transformação Bacteriana
16.
J Bacteriol ; 193(23): 6750-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21984785

RESUMO

As a result of a frameshift mutation, the hsdS locus of the NgoAV type IC restriction and modification (RM) system comprises two genes, hsdS(NgoAV1) and hsdS(NgoAV2). The specificity subunit, HsdS(NgoAV), the product of the hsdS(NgoAV1) gene, is a naturally truncated form of an archetypal specificity subunit (208 N-terminal amino acids instead of 410). The presence of a homonucleotide tract of seven guanines (poly[G]) at the 3' end of the hsdS(NgoAV1) gene makes the NgoAV system a strong candidate for phase variation, i.e., stochastic addition or reduction in the guanine number. We have constructed mutants with 6 guanines instead of 7 and demonstrated that the deletion of a single nucleotide within the 3' end of the hsdS(NgoAV1) gene restored the fusion between the hsdS(NgoAV1) and hsdS(NgoAV2) genes. We have demonstrated that such a contraction of the homonucleotide tract may occur in vivo: in a Neisseria gonorrhoeae population, a minor subpopulation of cells appeared to have only 6 guanines at the 3' end of the hsdS(NgoAV1) gene. Escherichia coli cells carrying the fused gene and expressing the NgoAVΔ RM system were able to restrict λ phage at a level comparable to that for the wild-type NgoAV system. NgoAV recognizes the quasipalindromic interrupted sequence 5'-GCA(N(8))TGC-3' and methylates both strands. NgoAVΔ recognizes DNA sequences 5'-GCA(N(7))GTCA-3' and 5'-GCA(N(7))CTCA-3', although the latter sequence is methylated only on the complementary strand within the 5'-CTCA-3' region of the second recognition target sequence.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Enzimas de Restrição-Modificação do DNA/química , Enzimas de Restrição-Modificação do DNA/genética , Neisseria gonorrhoeae/enzimologia , Deleção de Sequência , Proteínas de Bactérias/metabolismo , Enzimas de Restrição-Modificação do DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo I/química , Desoxirribonucleases de Sítio Específico do Tipo I/genética , Desoxirribonucleases de Sítio Específico do Tipo I/metabolismo , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/genética , Mutação Puntual , Especificidade por Substrato
17.
PLoS One ; 6(3): e17346, 2011 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-21399684

RESUMO

Type I DNA methyltransferases contain one specificity subunit (HsdS) and two modification subunits (HsdM). The electron microscopy model of M.EcoKI-M2S1 methyltransferase shows a reasonable closed state of this clamp-like enzyme, but the structure of the open state is still unclear. The 1.95 Å crystal structure of the specificity subunit from Thermoanaerobacter tengcongensis (TTE-HsdS) shows an unreported open form inter-domain orientation of this subunit. Based on the crystal structure of TTE-HsdS and the closed state model of M.EcoKI-M2S1, we constructed a potential open state model of type I methyltransferase. Mutational studies indicated that two α-helices (aa30-59 and aa466-495) of the TTE-HsdM subunit are important inter-subunit interaction sites in the TTE-M2S1 complex. DNA binding assays also highlighted the importance of the C-terminal region of TTE-HsdM for DNA binding by the TTE-M2S1 complex. On the basis of structural analysis, biochemical experiments and previous studies, we propose a dynamic opening and closing mechanism for type I methyltransferase.


Assuntos
Proteínas de Bactérias/química , Enzimas de Restrição-Modificação do DNA/química , Metiltransferases/química , Subunidades Proteicas/química , Thermoanaerobacter/enzimologia , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Enzimas de Restrição-Modificação do DNA/metabolismo , DNA Bacteriano/metabolismo , Metiltransferases/metabolismo , Modelos Moleculares , Mutação/genética , Ligação Proteica , Conformação Proteica , Subunidades Proteicas/metabolismo
18.
BMC Evol Biol ; 11: 35, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-21291520

RESUMO

BACKGROUND: The discovery of restriction endonucleases and modification DNA methyltransferases, key instruments of genetic engineering, opened a new era of molecular biology through development of the recombinant DNA technology. Today, the number of potential proteins assigned to type II restriction enzymes alone is beyond 6000, which probably reflects the high diversity of evolutionary pathways. Here we present experimental evidence that a new type IIC restriction and modification enzymes carrying both activities in a single polypeptide could result from fusion of the appropriate genes from preexisting bipartite restriction-modification systems. RESULTS: Fusion of eco29kIR and M ORFs gave a novel gene encoding for a fully functional hybrid polypeptide that carried both restriction endonuclease and DNA methyltransferase activities. It has been placed into a subclass of type II restriction and modification enzymes--type IIC. Its MTase activity, 80% that of the M.Eco29kI enzyme, remained almost unchanged, while its REase activity decreased by three times, concurrently with changed reaction optima, which presumably can be caused by increased steric hindrance in interaction with the substrate. In vitro the enzyme preferentially cuts DNA, with only a low level of DNA modification detected. In vivo new RMS can provide a 102-fold less protection of host cells against phage invasion. CONCLUSIONS: We propose a molecular mechanism of appearing of type IIC restriction-modification and M.SsoII-related enzymes, as well as other multifunctional proteins. As shown, gene fusion could play an important role in evolution of restriction-modification systems and be responsible for the enzyme subclass interconversion. Based on the proposed approach, hundreds of new type IIC enzymes can be generated using head-to-tail oriented type I, II, and III restriction and modification genes. These bifunctional polypeptides can serve a basis for enzymes with altered recognition specificities. Lastly, this study demonstrates that protein fusion may change biochemical properties of the involved enzymes, thus giving a starting point for their further evolutionary divergence.


Assuntos
Proteínas de Bactérias/metabolismo , Evolução Biológica , Metilases de Modificação do DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Metilases de Modificação do DNA/genética , Enzimas de Restrição-Modificação do DNA/química , Enzimas de Restrição-Modificação do DNA/genética , Enzimas de Restrição-Modificação do DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/química , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Dados de Sequência Molecular , Peptídeos/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência
19.
J Mol Biol ; 398(3): 391-9, 2010 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-20302878

RESUMO

The Type I R-M system EcoR124I is encoded by three genes. HsdM is responsible for modification (DNA methylation), HsdS for DNA sequence specificity and HsdR for restriction endonuclease activity. The trimeric methyltransferase (M(2)S) recognises the asymmetric sequence (GAAN(6)RTCG). An engineered R-M system, denoted EcoR124I(NT), has two copies of the N-terminal domain of the HsdS subunit of EcoR124I, instead of a single S subunit with two domains, and recognises the symmetrical sequence GAAN(7)TTC. We investigate the methyltransferase activity of EcoR124I(NT), characterise the enzyme and its subunits by analytical ultracentrifugation and obtain low-resolution structural models from small-angle neutron scattering experiments using contrast variation and selective deuteration of subunits.


Assuntos
Enzimas de Restrição-Modificação do DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Metiltransferases/metabolismo , Proteínas Recombinantes/metabolismo , Enzimas de Restrição-Modificação do DNA/química , Enzimas de Restrição-Modificação do DNA/genética , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Metiltransferases/química , Metiltransferases/genética , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espalhamento a Baixo Ângulo , Ultracentrifugação
20.
Nucleic Acids Res ; 38(7): 2428-43, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20071371

RESUMO

The mobility of restriction-modification (RM) gene complexes and their association with genome rearrangements is a subject of active investigation. Here we conducted systematic genome comparisons and genome context analysis on fully sequenced prokaryotic genomes to detect RM-linked genome rearrangements. RM genes were frequently found to be linked to mobility-related genes such as integrase and transposase homologs. They were flanked by direct and inverted repeats at a significantly high frequency. Insertion by long target duplication was observed for I, II, III and IV restriction types. We found several RM genes flanked by long inverted repeats, some of which had apparently inserted into a genome with a short target duplication. In some cases, only a portion of an apparently complete RM system was flanked by inverted repeats. We also found a unit composed of RM genes and an integrase homolog that integrated into a tRNA gene. An allelic substitution of a Type III system with a linked Type I and IV system pair, and allelic diversity in the putative target recognition domain of Type IIG systems were observed. This study revealed the possible mobility of all types of RM systems, and the diversity in their mobility-related organization.


Assuntos
Enzimas de Restrição-Modificação do DNA/genética , Genoma Bacteriano , Alelos , Enzimas de Restrição-Modificação do DNA/química , Elementos de DNA Transponíveis , DNA Bacteriano/química , Loci Gênicos , Genoma Arqueal , Genômica , Sequências Repetidas Invertidas , Estrutura Terciária de Proteína , Sequências Repetitivas de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...